Abstract
The grouping of turbines in large farms introduces that a wind turbine operating in the wake of another turbine and has a reduced power production because of a lower wind speed after rotor. The flow field in the wake behind the first row turbines is characterized by a significant deficit in wind velocity and increased levels of turbulence intensity. Consequently, the downstream turbines in a wind farm cannot extract as much power from the wind as the first row turbines. Therefore modeling wake effect is necessary because it has a great influence on the actual energy output of a wind farm. In this study, the adaptive neuro-fuzzy inference system (ANFIS) is designed and adapted to estimate wake effect in a wind farm according to wind turbine positions in wind farm, distances between turbines in the wind farm and rotor radius as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.