Abstract

AbstractIn order to overcome the difficulty of extracting facial expression features by neural network model, and the problems of complicated training process and parameter redundancy caused by stacking deep network structure, this paper proposes a CNN model that introduces an attention mechanism. In this paper, facial expression images are used as the object, and the research of cfacial expression recognition based on convolutional neural network is carried out. Based on the construction of natural expression feature views in the natural environment, the automatic data enhancement technology for deep convolutional neural networks is introduced, and the attention mechanism is combined to adjust the weights of different channels, and the facial expression recognition with texture information extraction as the traction is established deep learning model and facial expression recognition mechanism. At the same time, we propose a combined loss function. The effectiveness of this method is verified on the FER2013, FERplus, CK+, SFEW and RAF-DB data sets, and good results have been achieved.KeywordsConvolutional neural networkExpression recognitionAttention mechanism

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.