Abstract

Retinal vasculature extraction is an area of utmost interest in ophthalmology. It helps to diagnose various diseases and also play a crucial role in treatment planning and accomplishment.In this work, we suggest an algorithm to segment retinal vasculature from retinal Fundus Images(FI) using multi-structure element morphology after enhancing the image using Normal Inverse Gaussian (NIG) model in the fuzzified Non-Subsampled Contourlet Transform (NSCT) domain. Since both noises and weak edges produce low magnitude NSCT coefficients, image enhancement methods amplify weak edges as well as noises. Direct application of image boosting technique in the NSCT domain causes over enhancement. So a novel image enhancement method is employed by interpreting the term “contrast” as a qualitative instead of a quantitative measure of the image. Membership values of NSCT coefficients are modified using NIG model. Mathematical Morphology(MM) by Multi-structure Elements (MEs) is used to extract the edges of image. False vessel ridges are expunged, and the thin vessel edges are preserved using opening by reconstruction. Connected component analysis followed by length filtering is used to filter the still remaining false edges. In most of the available literature, low-resolution fundus image databases are used for evaluating the algorithm. In our work, we evaluate our algorithm not only utilizing the DRIVE database, a low-resolution retinal image (RI) database, but also using an openly available High-Resolution Fundus (HRF) image database. Our result illustrates that the proposed method outperforms the other techniques considered with average accuracy (ACC) of 96.71%. In addition to ACC, we also use F1-Score and Mathews Correlation Coefficient (MCC) to evaluate our method. The average values of the results obtained with the HRF image database for F1-Score and MCC are 0.8172 and 0.8031, respectively, which are very much encouraging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.