Abstract

The crystal structures of opsin in the ligand-free and the G-protein-interacting states showed two inter-helical openings between transmembrane (TM) helices TM1 and TM7 and between TM5 and TM6 near the extracellular side that were thought to serve as the retinal uptake and release gates. However, it is unclear which opening is for 11-cis-retinal uptake or all-trans-retinal release although speculations have been proposed based on the structural features of opsin and retinal. In this work, we simulated the exit process of all-trans-retinal from the ligand-free opsin structure by the classical molecular dynamics (MD) and random acceleration molecular dynamics (RAMD). In the 64 ns classical MD simulation, retinal remained in the receptor but moved significantly toward the TM5-TM6 opening and almost inserted into the opening after 50 ns. Complete exit was observed in 114 out of 160 RAMD trajectories with the TM5-TM6 opening being the predominant egress gate while egress from the TM1-TM7 opening was observed in only a few trajectories when relatively large acceleration was applied and large structural alteration of the protein resulted. These results suggest that photolyzed all-trans-retinal is likely released through the TM5-TM6 opening. Based on the unidirectional mechanism of retinal exchange suggested by experiment, we speculate that the TM1-TM7 opening serves as the 11-cis-retinal uptake gate. The spatial occupancy maps of retinal computed from the 160 RAMD trajectories further indicated that retinal experienced significant interactions with the receptor during the exit process. The implications of these findings for disease mechanisms of rhodopsin mutants are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.