Abstract

Optic disc localization is of great diagnostic value related to retinal diseases, such as glaucoma and diabetic retinopathy. However, the detection process is quite challenging because positions of optic discs vary from image to image, and moreover, pathological changes, like hard exudates or neovascularization, may alter optic disc appearance. In this paper, we propose a robust approach to accurately detect the optic disc region and locate the optic disc center in color retinal images. The proposed technique employs a kernelized least-squares classifier to decide the area that contains optic disc. Then connected-component labeling and lumination information are used together to find the convergence of blood vessels, which is thought to be optic disc center. The proposed method has been evaluated over two datasets: the Digital Retinal Images for Vessel Extraction (DRIVE), and the Non-fluorescein Images for Vessel Extraction (NIVE) datasets. Experimental results have shown that our method outperforms existing methods, achieving a competitive accuracy (97.52 %) and efficiency (1.1577s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.