Abstract

Retinal diseases and systemic diseases, such as diabetic retinopathy (DR) and Alzheimer’s disease, may manifest themselves in the retina, changing the retinal oxygen saturation ([Formula: see text]) level or the retinal vascular structures. Recent studies explored the correlation of diseases with either retina vascular structures or [Formula: see text] level, but not both due to the lack of proper instrument or methodology. In this study, we applied a dual-modal fundus camera and developed a deep learning-based analysis method to simultaneously acquire and quantify the [Formula: see text] and vascular structures. Deep learning was used to automatically locate the optic discs and segment arterioles and venules of the blood vessels. We then sought to apply machine learning methods, such as random forest (RF) and support vector machine (SVM), to fuse the [Formula: see text] level and retinal vessel parameters as different features to discriminate against the disease from the healthy controls. We showed that the fusion of the functional (oxygen saturation) and structural (vascular parameters) features offers better performance to classify diseased and healthy subjects. For example, we gained a 13.8% and 2.0% increase in the accuracy with fusion using the RF and SVM to classify the nonproliferative DR and the healthy controls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.