Abstract

Ethambutol-induced optic neuropathy is a well recognized adverse ocular event. However, abnormalities of the retina in this optic neuropathy are not fully understood. Therefore, the purpose of the present study was to investigate both functional and morphological alterations of the retina induced by ethambutol in monkeys. Ethambutol was orally administered to three cynomolgus monkeys, initially at 400 mg/kg/day followed by 800 mg/kg/day, for a maximum of 39 weeks. Full-field electroretinograms (ERGs) were recorded at intervals of approximately one month. The protocol included standard ERG responses to white flashes obtained under dark-adapted conditions (rod, combined rod-cone, oscillatory potentials) or with a white background (single-flash cone, 30 Hz flicker). In addition, we measured the ERG elicited with red flashes under blue background light (single-flash cone response [R/B]). All the ethambutol-treated monkeys were euthanized, and the retinae and various other nervous system tissues were examined histopathologically. No obvious changes were observed in the standard full-field ERGs. On the other hand, selective attenuation of the photopic negative response (PhNR) of the single-flash cone response (R/B) was observed in two out of three ethambutol-treated monkeys at week 22 or 28. Histopathology of these two monkeys revealed single cell necrosis of the retinal ganglion cells (RGCs), decreased RGCs in the parafovea and increased microglial cells in the nerve fiber layer in the retina, in addition to demyelination and glial reaction in the optic nerve, chiasm and tracts. The attenuated PhNR and histopathology of the retina indicated that RGCs were markedly damaged, both functionally and morphologically in monkeys with ethambutol-induced optic neuropathy. These results implied that RGCs are predominantly affected in the retina of patients with ethambutol-induced optic neuropathy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.