Abstract

Bastin et al. 2019 use two flawed assumptions: 1) that the area suitable for restoration does not contain any carbon currently, and 2) that soil organic carbon (SOC) from increased canopy cover will accumulate quickly enough to mitigate anthropogenic carbon emissions. We re-evaluated the potential carbon storage worldwide using empirical relationships of tree cover and carbon. We use global datasets of tree cover, soil organic carbon, and above ground biomass to estimate the empirical relationships of tree cover and carbon stock storage. A more realistic range of global carbon storage potential is between 71.7 and 75.7 GtC globally, with a large uncertainty associated with SOC. This is less than half of the original 205 GtC estimate. The potential global carbon storage of restored forests is much less than that estimated by Bastin et al. 2019. While we agree on the value of assessing global reforestation potential, we suggest caution in considering it the most effective strategy to mitigate anthropogenic emissions. A preprint version of this article was published on 13 August 2019 at https://doi.org/10.1101/730325

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.