Abstract
Sneak path current generated by adjacent cells in three-dimensional (3D) memristor arrays must be curbed while securing the multi-bit storage capability of each cell to aid in the cost-effective increase in array size. For this purpose, a 3D stackable TaOx/HfO2-based selectorless memristor has been proposed and optimized via capacitance-dependent voltage division analysis. The proposed device utilizes the formation or rupture of conductive filaments for self-rectifying resistive switching operation, in contrast to nonfilamentary devices that often exploit the change in the charge state of the electron trap. This approach enables the reduction of the trapped charge leakage through the interface between the resistive switching and metal layers effectively, giving rise to excellent retention properties (>5 × 105 s). Furthermore, the proposed device exhibits a sufficiently high on/off ratio (~1.35 × 103), rectification ratio (~2.3 × 103), endurance (1.5 × 102 cycles), and low resistance variation (standard deviation <0.022). Moreover, multilevel operations are facilitated, making the proposed device suitable for high-density, nonvolatile memory applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.