Abstract

The retention behaviour of various amino acids, peptides and proteins on poly(vinylimidazole)-Cu(II) complexes supported on silica was investigated. Free amino acids and peptides containing one histidine and in some instances one additional tryptophan residue in their primary structure were found to elute from the supports only after addition of a competing complexing agent to the mobile phase. However, the results obtained the proteins containing metal binding groups suggested that, in addition to the presence of donor-acceptor interactions between the macromolecules and the immobilized metal, other additional (essentially ionic and/or hydrophobic) interactions took place between the proteins and the surrounding of the metal. When donor-acceptor interactions were predominant, proteins were strongly adsorbed on the stationary phase and their elution required the addition of a competing complexing agent in the mobile phase. However, when the binding between the proteins and the supports via donor-acceptor interactions was less favourable, proteins were eluted from the columns without the addition of a competing agent in the mobile phase. With respect to the binding of these proteins, ionic and/or hydrophobic interactions were no longer negligible during the chromatographic process and the retention of the macromolecules by the stationary phase depended on the elution conditions (ionic strength, pH, etc.). These supports were used in the fractionation of the three main genetic variants of desialylated alpha 1-acid glycoprotein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.