Abstract

The retarded interaction between an electron and a spin-0 nucleus is derived from electrodynamical perturbation theory. The contribution of retardation at order v(2)c(2) mimics the Breit interaction [Phys. Rev. 34, 553 (1929); 36, 388 (1930); 39, 616 (1932)] with the Dirac matrix alpha(2) being replaced by p(2)m(2)c where p(2) is the linear momentum operator for the nucleus. An effective one-electron retardation operator is obtained in relative coordinates, and this can be used through all orders in perturbation theory without any problem of infinite degeneracy. A few steps of unitary transformation lead to the nonrelativistic limit. The leading terms in retardation corrections to energy are of order (m(e)m(n))alpha(2)Z(4)(alpha(2)m(e)c(2)). The implications for atomic systems are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.