Abstract

Ret finger protein 2 ( RFP2), a gene frequently deleted in multiple tumor types, encodes a protein with a RING finger, B-box, and coiled-coil domain that belongs to the RBCC/TRIM protein family. Although RBCC proteins are involved in diverse cellular processes such as apoptosis, proliferation, differentiation, and transcriptional regulation, the biological function of RFP2 has not been well defined. Here, we demonstrate that overexpression of RFP2 in cells induced apoptosis through proteasomal degradation of MDM2 and AKT. The expression of RFP2, which possesses RING domain-dependent E3 ubiquitin ligase activity, was increased by ionizing radiation dose- and time-dependently, and RFP2 overexpression induced cell death with increased expression of apoptotic molecules (p53, p21, and Bax). These results depended on the E3 ubiquitin ligase activity of RFP2 because mutant RFP2, which contains a mutated RING domain, failed to drive apoptosis compared with wild-type RFP2. We observed that RFP2 formed a complex with MDM2, a negative regulator of the p53 tumor suppressor, and AKT, a regulator of apoptosis inhibition at the cellular level. Additionally, we found that the interaction of RFP2 with MDM2 and AKT resulted in ubiquitination and proteasomal degradation of MDM2 and AKT in vivo and in vitro. Thus, these data suggest that irradiation causes RFP2 overexpression, which enhances ionizing radiation-induced apoptosis by increasing p53 stability and decreasing AKT kinase activity through MDM2 and AKT degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.