Abstract

Incorporation of osteoinductive factors in a suitable scaffold is considered a promising strategy for generating osteogenic biomaterials. Resveratrol is a polyphenol found in parts of certain plants, including nuts, berries and grapes. It is known to increase DNA synthesis and alkaline phosphatase (ALP) activity in osteoblasts and to prevent femoral bone loss in ovariectomized (OVX) rats. In the present study resveratrol was coupled through a hydrolysable covalent bond with the carboxylic acid groups in porous poly-ε-caprolactone (PCL) surface grafted with acrylic acid (AA). The osteogenic effect of this new scaffold was evaluated in mesenchymal cell culture and in the rat calvarial defect model. We found that the incorporation of resveratrol caused increased ALP activity of rat bone marrow stromal cells and enhanced mineralization of the cell–scaffold composites in vitro. After 8 weeks the calvarial defects implanted with resveratrol-conjugated PCL displayed a higher X-ray density than the defects implanted with control PCL. Bone-like structures, positively immunostained for bone sialoprotein, were shown to be more extensively formed in the resveratrol-conjugated PCL. These results show that incorporation of resveratrol into the AA-functionalized porous PCL scaffold led to a significant increase in osteogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.