Abstract

In this study, the main focus is on an investigation of the sufficient conditions of existence and uniqueness of solution for two‐classess of nonlinear implicit fractional pantograph equations with nonlocal conditions via Atangana–Baleanu–Riemann–Liouville (ABR) and Atangana–Baleanu–Caputo (ABC) fractional derivative with order σ ∈ (1,2]. We introduce the properties of solutions as well as stability results for the proposed problem without using the semigroup property. In the beginning, we convert the given problems into equivalent fractional integral equations. Then, by employing some fixed‐point theorems such as Krasnoselskii and Banach’s techniques, we examine the existence and uniqueness of solutions to proposed problems. Moreover, by using techniques of nonlinear functional analysis, we analyze Ulam–Hyers (UH) and generalized Ulam–Hyers (GUH) stability results. As an application, we provide some examples to illustrate the validity of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.