Abstract

The article presents the results of an experimental study of the thermal parameters and with-standing experimental samples rocket engines gaseous oxygen with thrust 25 N and 100 N. In experimental models rocket engines thrust 25 N and 100 N ignition fuel components arranged in the discharge chamber spark plugs. Scheme carburetion of engines characterized by the interaction of coaxial swirling flows of fuel and oxidant is carried out in two stages. At the same time, realized highly turbulent flow, contributing to the efficient mixing of fuel and oxidizer in a limited volume of the combustion chamber. Cooling chamber traction motor 25 H organized using a gas curtain of fuel from the mixing head and the application of high temperature structural material boronsiliconized graphite, which is made of a combustion chamber and a nozzle. In rocket engines thrust 100N further organized subsonic curtain fuel located at the end of the cylindrical portion of the combustion chamber, but at the same time as the construction material used stainless steel type 12X18H10T. Experimental studies have been tested two structural variants of organization of the ignition process, evaluated the effectiveness of the scheme of mixing hydrogen and oxygen gases. In this case, the following values of specific impulse engines: for rocket engines thrust 25H with the geometric expansion ratio of the nozzle Fа = 45 - 3846 m/s; for rocket engines thrust 100N with Fа = 45 and Fа = 250 respectively 3855 m/s and 4100 m/s. From the point of view of the thermal state in the study design rocket engines propellants, promising is the use of new construction materials, such as ceramics, graphite-based materials with the development of the technology for their production, as well as interfacing to the mixing head, made, usually made of stainless steel. In support of the above, in the use of the camera rocket engines thrust of 25N boron-siliconized graphite allowed during the test the engine for 100 seconds to get the maximum temperature of the outer surface of the chamber at ~ 1045 C.

Highlights

  • В статье представлены результаты экспериментального исследования параметров и теплового состояния экспериментальных образцов ракетных двигателей малой тяги (РДМТ) на газообразном кислородно-водородном топливе тягой 25 Н и 100 Н

  • In rocket engines thrust 100N further organized subsonic curtain fuel located at the end of the cylindrical portion of the combustion chamber, but at the same time as the construction material used stainless steel type 12X18H10T

  • From the point of view of the thermal state in the study design rocket engines propellants, promising is the use of new construction materials, such as ceramics, graphite-based materials with the development of the technology for their production, as well as interfacing to the mixing head, made, usually made of stainless steel

Read more

Summary

Introduction

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ ПАРАМЕТРОВ РАКЕТНЫХ ДВИГАТЕЛЕЙ МАЛОЙ ТЯГИ В статье представлены результаты экспериментального исследования параметров и теплового состояния экспериментальных образцов ракетных двигателей малой тяги (РДМТ) на газообразном кислородно-водородном топливе тягой 25 Н и 100 Н.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.