Abstract

A kinetic Monte Carlo approach is applied to study physical mechanisms responsible for the breakup of nanowires with the diamond cubic crystal structure into a chain of nanoparticles discovered in preceding experiments on Silicon nanowires. We show that this process is based on the well-known mechanism of roughening transition, which specifically manifests itself in quasi-one-dimensional systems/nanowires with a pronounced anisotropy of the surface energy density. Depending on the temperature and orientation of the nanowire relative to its internal crystal structure, the wavelengths of substantial cross-sectional modulations exceed its initial radius by 4–18 times. For certain orientations, a straight nanowire at the initial stage of evolution forms a serpentine/helical structure. The scenarios of the stage of nanowire ruptures into single nanoclusters are also diverse: either each spindle-shaped region of the nanowire transforms into a separate drop (by long-wave surface perturbations), or the adjacent short-scale beads absorb each other due to the Ostwald ripening effect, which can be accompanied by the formation of long-lived many-body dumbbells. The discovered features of the dynamics of quasi-one-dimensional systems expand our conceptions of the physical mechanisms involved in the breakup of nanowires (presented by Nichols and Mullins as a classical model for such instabilities) which could be useful in applications based on chains of ordered nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.