Abstract

We consider the class of the Orthogonal Projection Methods (OPM) to solve iteratively large eigenvalue problems. An OPM is a method that projects a large eigenvalue problem on a smaller subspace. In this subspace, an approximation of the eigenvalue spectrum can be computed from a small eigenvalue problem using a direct method. Examples of OPMs are the Arnoldi and the Davidson method. We show how an OPM can be restarted — implicitly and explicitly. This restart can be used to remove a specific subset of vectors from the approximation subspace. This is called explicit filtering. An implicit restart can also be combined with an implicit filtering step, i.e. the application of a polynomial or rational function on the subspace, even if inaccurate arithmetic is assumed. However, the condition for the implicit application of a filter is that the rank of the residual matrix must be small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.