Abstract

We consider abstract non-negative self-adjoint operators on L 2(X) which satisfy the finite-speed propagation property for the corresponding wave equation. For such operators, we introduce a restriction type condition, which in the case of the standard Laplace operator is equivalent to (p, 2) restriction estimate of Stein and Tomas. Next, we show that in the considered abstract setting, our restriction type condition implies sharp spectral multipliers and endpoint estimates for the Bochner-Riesz summability. We also observe that this restriction estimate holds for operators satisfying dispersive or Strichartz estimates. We obtain new spectral multiplier results for several second order differential operators and recover some known results. Our examples include Schrodinger operators with inverse square potentials on R n , the harmonic oscillator, elliptic operators on compact manifolds, and Schr¨odinger operators on asymptotically conic manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.