Abstract
ABSTRACTIt is known that when the multicollinearity exists in the logistic regression model, variance of maximum likelihood estimator is unstable. As a remedy, Schaefer et al. presented a ridge estimator in the logistic regression model. Making use of the ridge estimator, when some linear restrictions are also present, we introduce a restricted ridge estimator in the logistic regression model. Statistical properties of this newly defined estimator will be studied and comparisons are done in the simulation study in the sense of mean squared error criterion. A real-data example and a simulation study are introduced to discuss the performance of this estimator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.