Abstract

The analysis of experimental results in reversed-phase liquid chromatography (RPLC) allows further discussion of the restricted diffusion model of surface diffusion formulated on the basis of the absolute rate theory. Chromatographic data were acquired on different RPLC systems with two series of homologous compounds, several stationary phases having different alkyl ligand densities and ligands of various lengths, and methanol/water mobile phases of different compositions. The enthalpy-entropy compensation observed and the linear free energy relationships found for surface diffusion suggest that the surface diffusion mechanism remains probably the same in all RPLC conditions studied. Whereas the isosteric heat of adsorption approaches zero with decreasing retention, the activation energy of surface diffusion tends toward a finite limit and the surface diffusion coefficient tends toward a value near the corresponding molecular diffusivity. These results support the validity of the restricted diffusion model. The influence of different factors on the validity of this model (i.e., the activation energy and the frequency factor of surface diffusion, and the surface tortuosity) was also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.