Abstract

AbstractLithium and manganese rich nickel cobalt manganese oxide (LMRNCM), as an attractive high energy density cathode for advanced lithium‐ion batteries (LIBs), suffers from inevitable lattice oxygen release, irreversible transition metal (TM) ion migration, and interface side reactions at high charge cut‐off voltage. Herein, a facile and efficient surface strategy is proposed to stabilize the layered structure by regulating the chemical bond interaction between the polyacrylonitrile (PAN) binder and the LMRNCM particles. Due to the high retention of discharge specific capacity and average discharge voltage, the energy density retention of the PAN‐modified LMRNCM sample is up to 80.12% after 300 cycles at 100 mA g−1 current density, and the initial Coulombic efficiency and rate capacity are also improved simultaneously. Experimental and density functional theory evidence demonstrates that the exceptional performance is caused by the coordination bond interaction between the carbon‐nitrogen‐triple‐bond of PAN and the TM ion in the unstable transition metal oxygen octahedron. The interaction suppresses the irreversible migration of TM ions by increasing the energy barrier, and ensures that the PAN adheres to the LMRNCM particles tightly, which relieves electrolyte corrosion and enhances cohesiveness. This work exploits a modification strategy to stabilize the LMRNCM‐layered structure for high‐energy density LIB applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.