Abstract

For a graph G = (V, E), a restrained double Roman dominating function is a function f : V → {0, 1, 2, 3} having the property that if f(v) = 0, then the vertex v must have at least two neighbors assigned 2 under f or one neighbor w with f(w) = 3, and if f(v) = 1, then the vertex v must have at least one neighbor w with f(w) ≥ 2, and at the same time, the subgraph G[V0] which includes vertices with zero labels has no isolated vertex. The weight of a restrained double Roman dominating function f is the sum f(V) = ∑v∈V f(v), and the minimum weight of a restrained double Roman dominating function on G is the restrained double Roman domination number of G. We initiate the study of restrained double Roman domination with proving that the problem of computing this parameter is NP-hard. Then we present an upper bound on the restrained double Roman domination number of a connected graph G in terms of the order of G and characterize the graphs attaining this bound. We study the restrained double Roman domination versus the restrained Roman domination. Finally, we investigate the bounds for the restrained double Roman domination of trees and determine trees T attaining the exhibited bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.