Abstract
Ecosystem restoration will increase following the ambitious international targets, which calls for a rigorous evaluation of restoration effectiveness. Here, we present results from a long-term before-after control-impact experiment on the restoration of forestry-drained boreal peatland ecosystems. Our data comprise 151 sites, representing six ecosystem types. Species-level vegetation sampling has been conducted before, two, five, and ten years after restoration. With joint species distribution modelling, we show that, on average, not restoring leads to further degradation, but restoration stops and reverses this trend. The variation in restoration outcomes largely arises from ecosystem types: restoration of nutrient-poor ecosystems has a higher probability of failure. Yet, the ten-year study period is insufficient to capture the restoration effects in slow-recovering ecosystems. Altogether, restoration can effectively halt the biodiversity loss of degraded ecosystems, although ecosystem attributes affect the outcome. This variability in outcomes underlies the need for evidence-based prioritization of restoration efforts across ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.