Abstract

BackgroundIn the past few decades, much has been learned about the pathophysiology of restless legs syndrome (RLS). Investigators have studied neuropathology, imaging, electrophysiology, and genetics of RLS, identifying brain regions and biological systems affected in RLS. This manuscript will review RLS pathophysiology literature, examining the RLS state through consideration of the neuroanatomy, then the biological, organ, and genetic systems.MethodsPubmed (1966 to April 2016) was searched for the term “restless legs syndrome” cross-referenced with “pathophysiology,” “pathogenesis,” “pathology,” or “imaging.” English language papers were reviewed. Studies that focused on RLS in relation to another disease were not reviewed.ResultsAlthough there are no gross structural brain abnormalities in RLS, widespread brain areas are activated, including the pre- and post-central gyri, cingulate cortex, thalamus, and cerebellum. Pathologically, the most consistent finding is striatal iron deficiency in RLS patients. A host of other biological systems are also altered in RLS, including the dopaminergic, oxygen-sensing, opioid, glutamatergic, and serotonergic systems. Polymorphisms in genes including BTBD9 and MEIS1 are associated with RLS.DiscussionRLS is a neurologic sensorimotor disorder that involves pathology, most notably iron deficiency, in motor and sensory brain areas. Brain areas not subserving movement or sensation such as the cingulate cortex and cerebellum are also involved. Other biological systems including the dopaminergic, oxygen-sensing, opioid, glutamatergic, and serotonergic systems are involved. Further research is needed to determine which of these anatomic locations or biological systems are affected primarily, and which are affected in a secondary response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call