Abstract

Previous invasive studies indicate that human neocortical graymatter contains cytoarchitectonically distinct layers, with notable differences in their structural connectivity with the rest of the brain. Given recent improvements in the spatial resolution of anatomical and functional magnetic resonance imaging (fMRI), we hypothesize that resting state functional connectivity (FC) derived from fMRI is sensitive to layer-specific thalamo-cortical and cortico-cortical microcircuits. Using sub-millimeter resting state fMRI data obtained at 7 T, we found that: (1) FC between the entire thalamus and cortical layers I and VI was significantly stronger than between the thalamus and other layers. Furthermore, FC between somatosensory thalamus (ventral posterolateral nucleus, VPL) and layers IV, VI of the primary somatosensory cortex were stronger than with other layers; (2) Inter-hemispheric cortico-cortical FC between homologous regions in superficial layers (layers I–III) was stronger compared to deep layers (layers V–VI). These findings are in agreement with structural connections inferred from previous invasive studies that showed that: (i) M-type neurons in the entire thalamus project to layer-I; (ii) Pyramidal neurons in layer-VI target all thalamic nuclei, (iii) C-type neurons in the VPL project to layer-IV and receive inputs from layer-VI of the primary somatosensory cortex, and (iv) 80% of collosal projecting neurons between homologous cortical regions connect superficial layers. Our results demonstrate for the first time that resting state fMRI is sensitive to structural connections between cortical layers (previously inferred through invasive studies), specifically in thalamo-cortical and cortico-cortical networks.

Highlights

  • The most distinct feature of the mammalian cerebral cortex is its laminar structure, comprised of cortical columns

  • To investigate whether functional connectivity (FC) is sensitive to layer-specific connectional architecture, we examined this aspect with high-resolution resting state functional magnetic resonance imaging (fMRI) data obtained at 7 T

  • The thalamo-cortical hypothesis is that FC between the entire thalamus and cortical layers I and VI must be significantly greater than that between the thalamus and other layers

Read more

Summary

Introduction

The most distinct feature of the mammalian cerebral cortex is its laminar structure, comprised of cortical columns. A cortical column is a unit of complex information processing. It consists of processing chains that overlap, linking multiple inputs to multiple other outputs [1]. A single column of cerebral cortical gray matter normally has six layers. Different layers in the column have distinct distribution and types of neurons as well as separate connections with other cortical and subcortical regions.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.