Abstract

Microcarriers with oxygen-delivering capacity have attracted increasing interest in the field of tissue regeneration. Here, a kind of molybdenum disulfide quantum dots (MoS2 QDs) integrated responsive porous microcarriers with controllable oxygen-delivering ability for wound healing is presented. The specific gelatin methacryloyl (GelMa) porous microcarriers are derived from inverse opal microparticles which can be decorated with the oxygen-carrying protein hemoglobin. Because of their characteristic porous structure, interconnected nanochannels, and excellent biocompatibility, the resultant microcarriers could carry oxygen extensively and provide support for tissue repair physically and biologically. Besides, since the typical photothermal effect of 2D materials and their derived 2D QDs, the inverse opal particles integrated with MoS2 QDs are imparted with photo-responsive capacity, which makes them able to release oxygen photo-controllably. It is demonstrated that the designed microcarriers can promote the repair of abdominal wall defects effectively with their multifunctional features. These remarkable properties point to the potential value of the microcarriers in wound healing and tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.