Abstract

The block copolymer poly(N-isopropylacrylamide)-b-poly(4-vinyl pyridine) (PNIPAM-b-P4VP) self-assembled into core-corona micelles with the P4VP block as core and the thermoresponsive PNIPAM block as corona in water. The diameter of the micelles was about 40nm and the lower critical solution temperature (LCST) was about 32°C. Gold nanoparticles of size ranging from 2 to 4nm were loaded in the micelles to form a responsive catalyst, the activity of which could be modulated due to the thermoresponsive PNIPAM. Below LCST, the PNIPAM chains were hydrophilic and the reactants could easily diffuse through the PNIPAM corona to reach the surface of the gold nanoparticles. Within this temperature range, the catalytic activity of the micelle-supported gold nanoparticles increased with the increase in temperature. Above LCST, the PNIPAM chains collapsed to form a hydrophobic barrier on the gold nanoparticles, which decelerated diffusion of the reactants. Within this temperature range, the activity of the micelle-supported gold nanoparticles decreased with the increase in temperature until to a minimum constant at about 38°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.