Abstract

Mineral protection mechanisms are important in determining the response of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) to temperature changes. However, the underlying mechanisms for how POC and MAOC respond to temperature changes are remain unclear. By translocating soils across 1304 m, 1425 m and 2202 m elevation gradient in a temperate forest, simulate nine months of warming (with soil temperature change of +1.41 °C and +3.91 °C) and cooling (with soil temperature change of −1.86 °C and −4.20 °C), we found that warming translocation significantly decreased POC by an average of 10.84 %, but increased MAOC by an average of 4.25 %. Conversely, cooling translocation led to an average increase of 8.64 % in POC and 13.48 % in MAOC. Exchangeable calcium (Caexe) had a significant positive correlation with POC and MAOC during temperature changes, and Fe/Al-(hydr)oxides had no significant correlation or a significant negative correlation with POC and MAOC. Our results showed that POC was more sensitive than MAOC to temperature changes. Caexe mediated the stability of POC and MAOC under temperature changes, and Fe/Al-(hydr)oxides had no obvious protective effect on POC and MAOC. Our results support the role of mineral protection in the stabilization mechanism of POC and MAOC in response to climate change and are critical for understanding the consequences of global change on soil organic carbon (SOC) dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.