Abstract
This study was conducted to investigate the effect of two distinct enzyme preparations on nutrients' digestibility and growth performance of growing pigs fed diets based on corn, soya bean meal and Chinese double-low rapeseed meal (DLRM). The two enzyme preparations were Enzyme R, a preparation extracted from fermentation of a non-GMO fungus Penicillum funiculosum, developed for multi-grain and multi-animal species; and Enzyme P, a xylanase preparation from Trichoderma longibrachiatum, for pigs fed corn-based diets only. Both enzymes were tested at 0, 0.25 and 0.50 g/kg feed using 70 crossbred male pigs (Large Yorkshire x Landrace) in five dietary treatments and seven replicates in each treatment, for growth period from 27 to 68 kg live weight in 49 days. Results showed that the supplementation of both enzymes (1) increased total-tract digestibility of dietary energy from 77.5% (control) to 81.4% (Enzyme R, p < 0.05) and 81.9% (Enzyme P, p < 0.05); of neutral detergent fibre from 41.0% (control) to 57.8% (Enzyme R, p < 0.05) and 60.0% (Enzyme P, p < 0.05); (2) improved average daily gain from 786 g (control) to 829 g (Enzyme R, p < 0.05) and 846 g (Enzyme P, p < 0.05); and numerical increases in feed intake from 1.96 kg/pig/day (control) to 2.01 (Enzyme R) and 2.00 (p > 0.05) and feed conversion ratio from 2.50 (control) to 2.42 (Enzyme R) and 2.36 (Enzyme P, p < 0.05); (3) there was a dose response but no significant differences were observed in enzyme efficacy between the two enzyme preparations. The present study demonstrated beneficial effects of applying xylanase-based enzymes to improve feeding values of pig diets based on corn, soya bean meal and DLRM.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.