Abstract
Previous behavioral work using both mechanical and computer-generated visual stimuli has demonstrated that mantids use a computational algorithm to recognize prey similar to that used by some amphibian predators: A stimulus elicits prey capture behavior if it falls within a perceptual envelope defined by five fundamental stimulus parameters: (1) overall size, (2) length of the leading edge, (3) contrast to the background, (4) location in the visual field, and (5) apparent speed. In this study, we recorded simultaneously from both cervical nerve cords of monocular Sphodromantis lineola while they viewed the same visual stimuli successfully used in the behavioral studies. Extracellular recordings showed three consistently proportioned amplitude classes of movement-elicited spikes in each cord and these were repeatedly and reliably identifiable across mantids. Overall, the movement-elicited activity in both cords was dominated by very large spikes suggesting the existence of several large, descending movement-sensitive interneurons projecting both ipsilaterally and contralaterally from the optic lobes. However, only the largest contralateral spikes occurred preferentially to prey-like stimuli, mirrored the behavioral response curves generated by S. lineola to the same visual stimuli, and displayed activity peaks that were correlated with the times at which the mantid emitted predatory strikes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.