Abstract

The present study was designed to study changes and its potential mechanisms in human bladder smooth muscle subjected to stretch. Bioinformatics analyses including differential expression analysis, overrepresentation enrichment analysis, principal component analysis, and weighted gene coexpression network analysis were used to analyze a microarray dataset (GSE47080) of partial bladder outlet obstruction (pBOO) in rat to find the potential changes of gene expressions. Bladder from pBOO model and human bladder smooth muscle cells (HBSMCs) subjected to sustained prolonged stretch were collected for Western blot analysis, real-time polymerase chain reaction, and fluorescence analysis to verify the changes of gene expressions and preliminarily study the potential role of signaling pathway regulation in treatment of pBOO. The bioinformatics analysis showed that chronic obstruction activated mitogen-activated protein kinase pathway and changed cytoskeleton structure in bladder smooth muscle. In in vivo experiments in mice, pBOO was verified by cystometry. Partial BOO activated the extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 protein kinase (p90RSK)/nuclear factor-κB (NF-κB) signaling pathway in DM. The messenger RNA (mRNA) expressions of contractile phenotypic proteins increased after pBOO. In in vitro experiments of HBSMCs, mechanical stretch activated ERK/p90RSK/NF-κB in HBSMCs in a time-dependent manner. The mRNA expressions of α-smooth muscle actin and SM22 also increased and filamentous actin (F-actin) polymerization was enhanced as well. Inhibition of ERK/p90RSK/NF-κB pathway reversed mechanical stretch-induced changes of contractile phenotypic expression and F-action polymerization. Continuous stretch increases expressions of contractile phenotypic proteins and promotes the polymerization of F-actin. This process partially goes through ERK/p90RSK/NF-κB pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.