Abstract
The response of tobacco plants genetically engineered with the AtTPS1 gene to stress induced by excess Cu and Cd was evaluated in hydroponic solution (100 and 400 μM Cu and 50 and 200 μM Cd) after a 48 h exposure. Two transgenic lines, transformed with the AtTPS1 (trehalose-6-phosphate synthase) gene from Arabidopsis, with different levels of trehalose-6-phosphate synthase expression (B5H, higher and B1F, lower), and a wild type (WT) were investigated. Protein content, antioxidative enzymes (CAT, POD, SOD, and APX), glucose, fructose, lipid peroxidation, hydrogen peroxide and Cd and Cu contents were determined in leaves. The two transgenic lines were differently influenced by Cd and Cu exposure as they induced a different antioxidant enzymatic defense response. B1F and B5H plants showed a better acclimation to Cd and excess Cu compared to WT. Furthermore B1F was more tolerant than B5H to Cd and excess Cu. B1F accumulated less Cd and Cu in leaves, probably due to a more efficient exclusion mechanism. Catalase was shown to be the most important enzyme in the antioxidative system of these plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.