Abstract

AbstractMelamine‐formaldehyde resins are widely used for decorative paper impregnation. Resin properties relevant for impregnation are mainly determined already at the stage of resin synthesis by the applied reaction conditions. Thus, understanding the relationship between reaction conditions and technological properties is important. Response surface methodology based on orthogonal parameter level variations is the most suitable tool to identify and quantify factor effects and deduce causal correlation patterns. Here, two major process factors of MF resin synthesis were systematically varied using such a statistical experimental design. To arrive at resins having a broad range of technological properties, initial pH and M:F ratio were varied in a wide range (pH: 7.9–12.1; M:F ratio: 1:1.5–1:4.5). The impregnation behavior of the resins was modeled using viscosity, penetration rate and residual curing capacity as technological responses. Based on the response surface models, nonlinear and synergistic action of process factors was quantified and a suitable process window for preparing resins with favorable impregnation performance was defined. It was found that low M:F ratios (~1:2–1:2.5) and comparatively high starting pHs (~pH 11) yield impregnation resins with rapid impregnation behavior and good residual curing capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.