Abstract
Juvenile fall Chinook salmon ( Oncorhynchus tshawythscha) and an autonomous sensor device (Sensor Fish) were exposed to turbulent shear flows to determine how hydraulic conditions affected fish injury response. Studies were designed to establish correlation metrics between Sensor Fish device measurements and live fish injuries by conducting concurrent releases in a range of turbulent shear flows. Comparisons were made for two exposure scenarios. In the fast-fish-to-slow-water scenario, test fish were carried by the fast-moving water of a submerged turbulent jet into the standing water of a flume. In the slow-fish-to-fast-water scenario, test fish were introduced into a turbulent jet from standing water through an introduction tube placed just outside the edge of the jet. Motion-tracking analysis was performed on high-speed, high-resolution digital videos of all the releases at water jet velocities ranging from 3 to 22.9 m s −1. Velocities of the Sensor Fish were very similar to those of live fish, but maximum accelerations of live fish were larger than those of Sensor Fish for all the nozzle velocities of both scenarios. A 10% probability of major injury threshold was found to occur at Sensor Fish accelerations of 513 and 260 m s −2 for the fast-fish-to-slow-water and slow-fish-to-fast-water scenarios, respectively. The findings provide a linkage between laboratory experiments of fish injury, field survival studies, and numerical modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.