Abstract

As a model for understanding how surfactant-stabilized emulsions respond to the addition of interacting and noninteracting particles, we investigated the response of dodecane-in-water emulsions stabilized by SDS (anionic), CTAB (cationic), and Triton X-100 (nonionic) surfactants to the addition of an aqueous suspension of negatively charged fumed silica particles. The stability of the emulsion droplets and the concentration of surfactants/particles at the oil-water interfaces are sensitive to surfactant-particle interactions, mixing conditions, and the particle concentration in the bulk. Addition of the particle suspension to the SDS-stabilized emulsions showed no effect on emulsion stability. Coarsening of emulsion droplets is observed when fumed silica particles were added to emulsions stabilized by Triton X-100. Depending on the concentration of silica particles in the suspension, the addition of fumed silica particles to CTAB-stabilized emulsions resulted in droplet coalescence and phase separation of oil and water or formation of particle-coated droplets. Vigorous (vortex) mixing allows the particles to breach the oil-water interfaces and stabilize emulsions. While we have examined a specific particle suspension and a set of three surfactants, these observations can be generalized for other surfactant-particle mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.