Abstract

Soil enzymes play vital roles in the decomposition of soil organic matter and soil nutrient mineralisation. The activity of soil enzymes may be influenced by climate change. In the present study we measured soil enzyme activity, soil microclimate and soil nutrients to investigate the response of soil enzyme activity to N addition and experimental warming. Warming enhanced phosphatase activity (35.8%), but inhibited the cellulase activity (30%). N addition significantly enhanced the activities of urease (34.5%) and phosphatase (33.5%), but had no effect on cellulase activity. Significant interactive effects of warming and N addition on soil enzyme activity were observed. In addition, warming reduced soil C (7.2%) and available P (20.5%), whereas N addition increased soil total N (17.3%) and available N (19.8%) but reduced soil C (7.3%), total P (14.9%) and available P (23.5%). Cellulase and phosphatase activity was highly correlated with soil temperature and water content, whereas urease activity was determined primarily by soil N availability. The results show that climate change not only significantly affects soil enzyme activity, but also affects the mineralisation of soil nutrients. These findings suggest that global change may alter grassland ecosystem C, N and P cycling by influencing soil enzyme activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.