Abstract

Simulated drift rates of bromoxynil followed by an in-crop application of metribuzin were applied to processing tomato in eight field studies conducted from 2008 to 2010 in Ridgetown, Ontario, Canada, to determine if a synergistic interaction occurred due to the cumulative herbicide application. A transient synergistic response was observed 7 d after treatment (DAT) when bromoxynil drift rates of 8.5, 17, and 34 g ai ha−1were followed 3 to 5 d later by metribuzin at 250 g ai ha−1. By 28 DAT, visible injury ratings were additive for 8.5, 17, and 34 g ha−1bromoxynil followed by metribuzin treatments. However, when bromoxynil at 68 g ha−1(20% of field rate) was followed by metribuzin, a synergistic interaction was evident and remained through harvest. Based on Colby's equation there was greater visible injury than expected at 7, 14, and 28 DAT when bromoxynil at 68 g ha−1was followed by metribuzin. A corresponding synergistic reduction of plant dry weight and marketable tomato yield, compared with the nontreated control, was identified. Marketable yields were expected to be 65% of the control according to Colby's equation, but observed yield reductions were 49% when bromoxynil at 68 g ha−1was followed by metribuzin. In general, tomato plants sprayed with metribuzin after bromoxynil drift had greater injury than treatments sprayed with bromoxynil alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.