Abstract

In this paper, we have investigated electric potential and field analytically for homogeneous conducting sphere by solving the Laplacian equation in fractional dimensional space. The laplacian equation in fractional space describes complex phenomena of physics. The separation variable method is used to solve the Laplace differential equation. The mathematical formulae governing the interaction of a low-frequency source of electric current with a spherical anomaly are derived in fractional dimensional space. These formulae are used to determine the apparent resistivity and induced-polarization response. The potential due to the current point source in fractional space is derived using Gegenbauer polynomials. The electric field inrensity of the homogeneous conducting sphere is calculated using the electric potential due to a current point source outside the sphere. The results are compared analytically with classical results by setting the fractional parameter α=3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.