Abstract
A major challenge in rice (Oryza sativa L.) production is to simultaneously achieve the goals of reducing water consumption, labor requirements and greenhouse gas (GHG) emissions while maintaining a sustainable grain yield. Dry direct-seeded rice (DDSR) has been proposed as an alternative rice production strategy because it reduces water consumption and labor requirements and increases system productivity. To evaluate the responses of grain yield, yield components, water productivity and GHG emissions to different first flood irrigation times under DDSR, field experiments were conducted under three different first-irrigation times: 15, 30 or 45days after sowing (DAS) in 2014 and 15, 35 or 55 DAS in 2015. The precipitation in the 45 DAS was 291mm in 2014 and 160mm in 2015. The results indicated that the grain yields under DDSR were not affected by the different flooding times in 2014 but were significantly reduced when the first flood irrigation time was prolonged to 55 DAS in 2015. Delaying the first flood irrigation time after sowing conserved water and significantly increased water productivity (WP) under DDSR. Prolonging the first flood irrigation time after sowing markedly decreased the CH4 gas emission, although delaying the first flood irrigation time increased the N2O gas emission, the global warming potential was significantly reduced. Based on these findings, we put forward the recommendation that the timing of first flood irrigation can be postponed to 45 DAS with precipitation levels higher than 160mm under DDSR in central China. However, long-term studies across different environments are inevitable to get definite conclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.