Abstract
It was determined that KB-R cell strains, isolated from the KB cell line and resistant to diphtheria toxin, also resist infection by poliovirus, Mengo virus, vesicular stomatitis virus, and Newcastle disease virus. This resistance manifests itself by reduction in yields of progeny virus (a reduction of more than 2 logs in some cases), reduced production of viral-specific ribonucleic acid (RNA), and delayed cytopathic effect. In three KB-R strains tested, resistance was related to a step which falls between adsorption of virus and uncoating or release of viral messenger RNA. In two of these three strains, a second resistance mechanism was also active, causing a reduced production of viral-specific RNA. A relationship between the resistance to diphtheria toxin and the resistance to viral infection of the KB-R strains is considered. It has been postulated that the native diphtheria toxin molecule must be "activated" at the surface of a susceptible cell by a proteolytic process before it can enter the cell and inhibit protein synthesis. It is also known that the eclipse of some viruses occurs at or near the cell membrane and involves proteolytic activity. Resistance to viruses and toxin in the KB-R strains may result from the loss or modification of related labilizing or activating principles associated with the surface receptors for these agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.