Abstract

Vegetation change in the Tibetan Plateau (TP) is a crucial indicator of climate change in alpine regions. Previous studies have reported an overall greening trend in the vegetation structure across the TP, especially in its northeastern part, in response to a warming climate. However, variations in the vegetation function and the possible drivers remain poorly understood. Considering the optimal temperature for plants in TP is usually higher than the current temperature, our hypothesis is the function and structure of alpine vegetation have changed synchronously over past few decades. To test this hypothesis, we analyzed satellite-observed solar-induced chlorophyll fluorescence (SIF) and leaf area index (LAI) in the Yellow River source (YRS) region in the northeastern TP to quantify the long-term trends in vegetation functional and structural states, respectively. The results suggest that from 1982 to 2018, SIF increased significantly in 77.71 % of the YRS area, resulting in a significant upward trend of 0.52 × 10−3 mW m−2 nm−1 sr−1 yr−1 (p < 0.001) for the regional-mean SIF. This represents a 16.1 % increase in SIF, which is close in magnitude to the increase in LAI over the same period. The synchronous changes between vegetation function and structure suggest that improved greenness corresponds to a similar level of change in carbon uptake across YRS. Additionally, we used a multiple regression approach to quantify the contribution of climatic factors to SIF changes in YRS. Our analyses show that the increases in SIF were primarily driven by rising temperatures. Spatially, temperature dominated SIF changes in most parts of YRS, except for certain dry parts in the northern and western YRS, where precipitation had a greater impact. Our results are crucial for a comprehensive understanding of climate regulations on vegetation structure and function in high-elevation regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.