Abstract

The response of the climatic system to changes in its radiative forcing has been the subject of much study. Climate models of various complexity have been used to demonstrate that a small increase in the solar constant, or doubling of the atmospheric CO2, would lead to a warmer surface. Very little scientific attention, however, has been given to the effect such a change in radiative balance might have on climatic variability. That is, would an earth warmed in this way be more temperate or more variable? To move one step closer to answering this question, we employed a simple one-dimensional surface energy balance climate model and forced it with random Gaussian white noise to simulate interannual variability. We integrated the model using 0, 2, and 4% increases in the solar constant. The results of these numerical experiments indicate that, under a warmer surface radiative balance, interannual variability of the surface temperature is reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.