Abstract

Helium-4-based scintillation detector technology is emerging as a strong alternative to pulse-shape discrimination-capable organic scintillators for fast neutron detection and spectroscopy, particularly in extreme gamma-ray environments. The 4He detector is intrinsically insensitive to gamma radiation, as it has a relatively low cross-section for gamma-ray interactions, and the stopping power of electrons in the 4He medium is low compared to that of 4He recoil nuclei. Consequently, gamma rays can be discriminated by simple energy deposition thresholding instead of the more complex pulse shape analysis. The energy resolution of 4He scintillation detectors has not yet been well-characterized over a broad range of energy depositions, which limits the ability to deconvolve the source spectra. In this work, an experiment was performed to characterize the response of an Arktis S670 4He detector to nuclear recoils up to 9 MeV. The 4He detector was positioned in the center of a semicircular array of organic scintillation detectors operated in coincidence. Deuterium–deuterium and deuterium–tritium neutron generators provided monoenergetic neutrons, yielding geometrically constrained nuclear recoils ranging from 0.0925 to 8.87 MeV. The detector response provides evidence for scintillation linearity beyond the previously reported energy range. The measured response was used to develop an energy resolution function applicable to this energy range for use in high-fidelity detector simulations needed by future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.