Abstract

BackgroundA blood pressure (BP) waveform contains various pieces of information related to respiratory variation. Systolic time interval (STI) reflects myocardial performance, and diastolic time interval (DTI) represents diastolic filling. This study examined whether respiratory variations of STI and DTI within radial arterial waveform are comparable to dynamic indices. MethodsDuring liver transplantation, digitally recorded BP waveform and stroke volume variation (SVV) were retrospectively analyzed. Beat-to-beat STI and DTI were extracted within each BP waveform, which were separated by dicrotic notch. Systolic time variation (STV) was calculated by the average of 3 consecutive respiratory cycles: [(STImax− STImin)/STImean]. Similar formula was used for diastolic time variation (DTV) and pulse pressure variation (PPV). Receiver operating characteristic analysis with area under the curve (AUC) was used to assess thresholds predictive of SVV ≥12% and PPV ≥12%. ResultsSTV and DTV showed significant correlations with SVV (r= 0.78 and r= 0.67, respectively) and PPV (r= 0.69 and r= 0.69, respectively). Receiver operating characteristic curves demonstrated that STV ≥11% identified to predict SVV ≥12% with 85.7% sensitivity and 89.3% specificity (AUC = 0.935; P< .001). DTV ≥11% identified to predict SVV ≥12% with 71.4% sensitivity and 85.7% specificity (AUC = 0.829; P< .001). STV ≥12% and DTV ≥11% identified to predict PPV ≥12% with an AUC of 0.881 and 0.885, respectively. ConclusionRespiratory variations of STI and DTI derived from radial arterial contour have a potential to predict hemodynamic response as a surrogate for SVV or PPV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.