Abstract
Pathology slides of lung malignancies are classified using resource-frugal convolution neural networks (CNNs) that may be deployed on mobile devices. In particular, the challenging task of distinguishing adenocarcinoma (LUAD) and squamous-cell carcinoma (LUSC) lung cancer subtypes is approached in two stages. First, whole-slide histopathology images are downsampled to a size too large for CNN analysis but large enough to retain key anatomic detail. The downsampled images are decomposed into smaller square tiles, which are sifted based on their image entropies. A lightweight CNN produces tile-level classifications that are aggregated to classify the slide. The resulting accuracies are comparable to those obtained with much more complex CNNs and larger training sets. To allow clinicians to visually assess the basis for the classification — that is, to see the image regions that underlie it — color-coded probability maps are created by overlapping tiles and averaging the tile-level probabilities at a pixel level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.