Abstract
Spectral efficiency (SE) and energy efficiency (EE) are the main metrics for designing wireless networks. Rather than focusing on either SE or EE separately, recent works have focused on the relationship between EE and SE and provided good insight into the joint EE-SE tradeoff. However, such works have assumed that the bandwidth was fully occupied regardless of the transmission requirements and therefore are only valid for this type of scenario. In this paper, we propose a new paradigm for EE-SE tradeoff, namely the resource efficiency (RE) for orthogonal frequency division multiple access (OFDMA) cellular network in which we take into consideration different transmission-bandwidth requirements. We analyse the properties of the proposed RE and prove that it is capable of exploiting the tradeoff between EE and SE by balancing consumption power and occupied bandwidth; hence simultaneously optimizing both EE and SE. We then formulate the generalized RE optimization problem with guaranteed quality of service (QoS) and provide a gradient based optimal power adaptation scheme to solve it. We also provide an upper bound near optimal method to jointly solve the optimization problem. Furthermore, a low-complexity suboptimal algorithm based on a uniform power allocation scheme is proposed to reduce the complexity. Numerical results confirm the analytical findings and demonstrate the effectiveness of the proposed resource allocation schemes for efficient resource usage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.