Abstract

We have designed, fabricated and tested piezoelectric polymer (Polyvinylidene fluoride, PVDF) film-based resonating actuators for tactile stimulation. The proposed resonating tactile stimulators are composed of 3×4 stimulating dot arrays with polyimide membranes. The air chambers placed on the PVDF films aid in indirect piezoelectric actuation and produce lower spring stiffnesses than are associated with conventional direct piezoelectric actuation. They can achieve large displacements with low input voltages. The performance of the proposed resonating tactile stimulators was characterized. The stimulators achieve an output displacement of 257.0 ± 1.5 nm, output pressure of 339.1 N/m2, and response time of 0.7 ms when an input voltage of 80 Vpk (52.5 kHz) is switched at 2 ms intervals (250 Hz). It has been experimentally demonstrated that the proposed flexible resonating actuators are capable of stimulating human skin to support tactile or braille displays integrated into tactile interface systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.