Abstract

Mode structure maps for freely vibrating cylinders over a range of Poisson's ratio, ν, are desirable for the design and interpretation of experiments using resonant ultrasound spectroscopy (RUS). The full range of isotropic ν (-1 to +0.5) is analyzed here using a finite element method to accommodate materials with a negative Poisson's ratio. The fundamental torsional mode has the lowest frequency provided ν is between about -0.24 and +0.5. For any ν, the torsional mode can be identified utilizing the polarization sensitivity of the shear transducers. RUS experimental results for materials with Poisson's ratio +0.3, +0.16, and -0.3 and a previous numerical study for ν = 0.33 are compared with the present analysis. Interpretation of results is easiest if the length∕diameter ratio of the cylinder is close to 1. Slight material anisotropy leads to splitting of the higher modes but not of the fundamental torsion mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.