Abstract

The rates of resonant and nearly resonant tunnel transitions have been calculated within the envelope function approximation for electrons and holes in silicon nanocrystals embedded in a silicon dioxide matrix. It is shown that, if the nanocrystals are close enough, the rates of resonant tunneling reach the values of the order of 1012–1014 s−1, which considerably exceed the rates of radiative recombination and other basic non-radiative processes, such as the Auger recombination and capture on surface defects. The transition rate is found to be very sensitive to inter-crystallite distance, crystallite size, and effective mass of the carriers in the oxide matrix. Electron tunneling turns out to be faster than the hole one, especially, at greater distances between the nanocrystals. Thus, the tunnel migration in a dense ensemble of nanocrystals is mainly electronic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.