Abstract

Herein, we present the design technique of a resonant rectifier for piezoelectric (PE) energy harvesting. We propose two diode equivalents to reduce the voltage drop in the rectifier operation, a minuscule-drop-diode equivalent (MDDE) and a low-drop-diode equivalent (LDDE). The diode equivalents are embedded in resonant rectifier integrated circuits (ICs), which use symmetric bias-flip to reduce the power used for charging and discharging the internal capacitance of a PE transducer. The self-startup function is supported by synchronously generating control pulses for the bias-flip from the PE transducer. Two resonant rectifier ICs, using both MDDE and LDDE, are fabricated in a 0.18 μm CMOS process and their performances are characterized under external and self-power conditions. Under the external-power condition, the rectifier using LDDE delivers an output power POUT of 564 μW and a rectifier output voltage VRECT of 3.36 V with a power transfer efficiency of 68.1%. Under self-power conditions, the rectifier using MDDE delivers a POUT of 288 μW and a VRECT of 2.4 V with a corresponding efficiency of 78.4%. Using the proposed bias-flip technique, the power extraction capability of the proposed rectifier is 5.9 and 3.0 times higher than that of a conventional full-bridge rectifier.

Highlights

  • There is increasing demand for autonomous sensing devices, deployed in various applications, such as medical, healthcare, and environmental monitoring [1]

  • Under self-power conditions, the rectifier using minuscule-drop-diode equivalent (MDDE) delivers a POUT of 288 μW and a VRECT

  • Under the self-power condition, the rectifier using MDDE delivers a POUT of 288 μW and a VRECT

Read more

Summary

Introduction

There is increasing demand for autonomous sensing devices, deployed in various applications, such as medical, healthcare, and environmental monitoring [1]. To enable uninterrupted data gathering from a large population of sensing devices, e.g., the Internet of Things (IoT), a long lifetime is critical. There are continued innovations in battery capacity, battery lifetime is still finite. To extend the lifetime of sensing devices, energy can be acquired from ambient sources. There exist various sources from which energy can be extracted, including thermal, solar, vibrations, and wind. Among those energy sources, vibrations can provide a relatively large amount of energy through highly-efficient piezoelectric (PE) transducers

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.